Effect of Seedling Ages and Generations on The Morphology and Productivity of Tropical Alfalfa (Medicago sativa L. cv Kacang Ratu BW)
Abstract
The productivity of ruminant livestock is highly dependent on the availability of quality forage feed that meets their needs. Alfalfa is palatable and rich in nutrients, minerals and vitamins that livestock may require. This study aimed to investigate the effect of age of tropical alfalfa seedlings and generations on the morphology and productivity of tropical alfalfa (Medicago sativa L. cv Kacang Ratu BW). The research design is Completely Randomized Design using 2 × 2 with two factorial and three replications. Evaluation of the effect of seedling ages (1 month and 2 months) and generations (F2 and F3) on plant growth (height of plants, branches, and leaves of plants) and productivity were recorded. The differences between treatments were continued, analysis with Duncan’s Multiple Range Test is used. The result showed that seedling ages in 2 months produced the highest plant productivity (P<0,05). Among the generations tested, F3 emerged as the top plant productivity (P<0,05). Plants productivity consisted of height of plants, number of branches, number of leaves. The study concluded that planting alfalfa seedlings at two months old significantly influences plant height and leaf count, resulting in better overall growth. However, the influence of generation, specifically F3, affects plant height. The number of branches does not significantly affect either seedling age or generation.
References
Abdel-Galil, M. M. (2007). Yield potential, genetic variation, correlation and path coefficient for two newly developed synthetics and three commercial varieties of alfalfa.
Adrianto, H. I., Mustikarini, E. D., & Prayoga, G. I. (2021). Seleksi Generasi F2 untuk Mendapatkan Jagung dengan Kandungan Antosianin. Jurnal Ilmu Pertanian Indonesia, 26(2), 301-308.
Annicchiarico, P. (2015). Alfalfa forage yield and leaf/stem ratio: narrow-sense heritability, genetic correlation, and parent selection procedures. Euphytica, 205, 409-420.
Arshad, M., Gruber, M. Y., Wall, K., & Hannoufa, A. (2017). An insight into microRNA156 role in salinity stress responses of alfalfa. Frontiers in Plant Science, 8, 356.
Ayele, J., Tolemariam, T., Beyene, A., Tadese, D. A., & Tamiru, M. (2021). Assessment of livestock feed supply and demand concerning livestock productivity in Lalo Kile district of Kellem Wollega Zone, Western Ethiopia. Heliyon, 7(10).
Bakheit, B. R., Ali, M. A., & Helmy, A. A. (2011). Effect of selection for crown diameter on forage yield and quality components in alfalfa (Medicago sativa L.).
Barros, J., Temple, S., & Dixon, R. A. (2019). Development and commercialization of reduced lignin alfalfa. Current opinion in biotechnology, 56, 48-54.
Berntson, G. M. (1997). Topological scaling and plant root system architecture: developmental and functional hierarchies. The New Phytologist, 135(4), 621-634.
Buhaerah, B., & Kuruseng, M. A. (2016). Pengaruh Transplanting Terhadap Pertumbuhan Dan Produksi Tanaman Terong (Solanum Melongena): Transplanting Effect On The Growth And Production Of Eggplant (Solanum melongena). Jurnal Agrisistem, 12(2), 203-214.
Collet, C., & Le Moguedec, G. (2007). Individual seedling mortality as a function of size, growth and competition in naturally regenerated beech seedlings. Forestry, 80(4), 359-370.
El-Ramady, H., Abdalla, N., Kovacs, S., Domokos-Szabolcsy, É., Bákonyi, N., Fari, M., & Geilfus, C. M. (2020). Alfalfa growth under changing environments: An overview. Environment, Biodiversity and Soil Security, 4(2020), 201-224.
De Frutos, S., Manso, R., Roig-Gómez, S., Ruiz-Peinado, R., del Río, M., & Bravo-Fernández, J. A. (2024). Height increment patterns in Pinus pinaster seedlings emerging in naturally regenerated gaps. Forestry: An International Journal of Forest Research, 97(4), 635-648.
Grossnickle, S. C., & MacDonald, J. E. (2018). Why seedlings grow: influence of plant attributes. New forests, 49, 1-34.
Guo, H., Gong, Y. B., & Bao, A. K. (2019). Comprehensive assessment of drought resistance in seedlings of five alfalfa (Medicago sativa L.) cultivars. Applied Ecology and Environmental Research, 17(6), 13253-13261.
Javaid, T., Sadaqat, H. A., Iqbal, M. A., & Wahid, M. A. (2020). Development of high forage yield and better-quality alfalfa population. Pakistan Journal of Agricultural Sciences, 57(3).
Jia, X., Zhang, Z., & Wang, Y. (2022). Forage yield, canopy characteristics, and radiation interception of ten alfalfa varieties in an arid environment. Plants, 11(9), 1112.
Joshi, B. K. (2017). Plant breeding in Nepal: Past, present and future. Journal of Agriculture and Forestry University, 1(2017), 1-33.
Julier, B., Huyghe, C., & Ecalle, C. (2000). Within‐and among‐cultivar genetic variation in alfalfa: Forage quality, morphology, and yield. Crop Science, 40(2), 365-369.
Kang, J. M., Long, R. C., Cui, Y. J., Zhang, T. J., Xiong, J. B., Yang, Q. C., & Yan, S. U. N. (2016). Proteomic Analysis Of Salt And Osmotic-Drought Stress In Alfalfa Seedlings. Journal Of Integrative Agriculture, 15(10), 2266-2278.
Kirk, H., Cheng, D., Choi, Y. H., Vrieling, K., & Klinkhamer, P. G. (2012). Transgressive segregation of primary and secondary metabolites in F 2 hybrids between Jacobaea aquatica and J. vulgaris. Metabolomics, 8, 211-219.
Lamers, J., Van Der Meer, T., & Testerink, C. (2020). How plants sense and respond to stressful environments. Plant Physiology, 182(4), 1624-1635.
Lavarello Herbin, A., Golluscio, R. Á., & Rodriguez, A. M. (2020). Weed effects on the establishment and nutritive value of pastures with different annual/perennial ratio. Agrosystems, Geosciences & Environment, 3(1), e20121.
Li, Y., & Su, D. (2017). Alfalfa water use and yield under different sprinkler irrigation regimes in north arid regions of China. Sustainability, 9(8), 1380.
Lou, S., Ning, J., Zhang, C., Wang, C., Zhu, W., Chang, S., & Hou, F. (2021). Multi-Scale Evaluation of Dominant Factors (MSDF) on Forage: An Ecosystemic Method to Understand the Function of Forage. Sustainability, 13(4), 2163.
Ma, Q., Kang, J., Long, R., Zhang, T., Xiong, J., Zhang, K., ... & Sun, Y. (2017). Comparative proteomic analysis of alfalfa revealed new salt and drought stress-related factors involved in seed germination. Molecular Biology Reports, 44, 261-272.
Min, X., Luo, K., Liu, W., Zhou, K., Li, J., & Wei, Z. (2022). Molecular characterization of the miR156/MsSPL model in regulating the compound leaf development and abiotic stress response in alfalfa. Genes, 13(2), 331.
Notenbaert, A. M., Douxchamps, S., Villegas, D. M., Arango, J., Paul, B. K., Burkart, S., ... & Peters, M. (2021). Tapping into the environmental co-benefits of improved tropical forages for an agroecological transformation of livestock production systems. Frontiers in Sustainable Food Systems, 5, 742842.
Pérez-Prieto, L. A., González-Verdugo, H., & Muñoz, C. (2018). Effect of grazing rotation length on milk production and composition of dairy cows strip-grazing at the same herbage allowance during a dry summer. Livestock Science, 214, 259-264.
Radović, J., Sokolović, D., & Marković, J. J. B. A. H. (2009). Alfalfa-most important perennial forage legume in animal husbandry. Biotechnology in Animal Husbandry, 25(5-6-1), 465-475.
Roy, M., Niu, J., Irshad, A., Kareem, H. A., Hassan, M. U., Xu, N., ... & Wang, Q. (2021). Exogenous melatonin protects alfalfa (Medicago sativa L.) seedlings from drought-induced damage by modulating reactive oxygen species metabolism, mineral balance and photosynthetic efficiency. Plant Stress, 2, 100044.
Seiam, M. A., & El-Nahrawy, M. A. (2020). Selection of some alfalfa populatios for forage yield and quality using modified mass selection. Egyptian Journal of Plant Breeding, 24(3), 617-630.
Slathia, S., Sharma, A., & Choudhary, S. P. (2012). Influence of exogenously applied epibrassinolide and putrescine on protein content, antioxidant enzymes and lipid peroxidation in Lycopersicon esculentum under salinity stress. American Journal of Plant Sciences, 3(6), 714-720.
Sulfiar, A. E. T., Atmoko, B. A., Guntoro, B., & Budisatria, I. G. S. (2020). Study of pasture productivity for semi-intensive cattle system during dry season in the South Konawe Regency, Southeast Sulawesi. Buletin Peternakan, 44(3), 148-154.
Susanto, M., & Baskorowati, L. (2018). Pengaruh genetik dan lingkungan terhadap pertumbuhan sengon (Falcataria molucanna) ras lahan Jawa. Bioeksperimen: Jurnal Penelitian Biologi, 4(2), 35-41.
Suwignyo, B., Arifin, L., Umami, N., Muhlisin, M., & Suhartanto, B. (2021). The performance and genetic variation of first and second generation tropical alfalfa (Medicago sativa). Biodiversitas Journal of Biological Diversity, 22(6).
Suwignyo, B., Kurniawan, F. D., Suseno, N., Utomo, R., & Suhartanto, B. (2020). Productivity and nutrient content of the second regrowth alfalfa (Medicago Sativa L.) with different photoperiod and dolomite. Animal Production, 22(2), 74-81.
Suwignyo, B., Rini, E. A., & Helmiyati, S. (2023). The profile of tropical alfalfa in Indonesia: A review. Saudi Journal of Biological Sciences, 30(1), 103504.
Suwignyo, B., Subantoro, R., & Yudono, P. (2014, November). Nutrition values and digestibility of three varieties alfalfa (Medicago sativa L.) were inoculated with rhizobium assorted. In Proceedings of the 16th AAAP Animal Science Congress (Vol. 2).
Tardieu, F. (2013). Plant response to environmental conditions: assessing potential production, water demand, and negative effects of water deficit. Frontiers in physiology, 4, 17.
Toca, A., Moler, E., Nelson, A., & Jacobs, D. F. (2022). Environmental conditions in the nursery regulate root system development and architecture of forest tree seedlings: a systematic review. New Forests, 53(6), 1113-1143.
Tulu, D., Gadissa, S., Hundessa, F., & Kebede, E. (2023). Contribution of climate‐smart forage and fodder production for sustainable livestock production and environment: Lessons and challenges from Ethiopia. Advances in Agriculture, 2023(1), 8067776.
Undersander, D. J., Vassalotti, P., & Cosgrove, D. (1997). Alfalfa germination & growth (Vol. 3681). University of Wisconsin--Extension, Cooperative Extension.
Veronesi, F., Brummer, E. C., & Huyghe, C. (2010). Alfalfa. Fodder crops and amenity grasses, 395-437.
Xu, H. J., Wang, X. P., & Zhao, C. Y. (2021). Drought sensitivity of vegetation photosynthesis along the aridity gradient in northern China. International Journal of Applied Earth Observation and Geoinformation, 102, 102418.
Yang, J., Yi, J., Ma, S., Wang, Y., Song, J., Li, S., ... & Yang, P. (2024). Integrated physiological, metabolomic, and transcriptomic analyses elucidate the regulation mechanisms of lignin synthesis under osmotic stress in alfalfa leaf (Medicago sativa L.). BMC genomics, 25(1), 174.
Zečević, B., Đorđević, R., Balkaya, A., Damnjanović, J., Đorđević, M., & Vujošević, A. (2011). Influence of parental germplasm for fruit characters in F1, F2 and F3 generations of pepper (Capsicum annuum L.). Genetika, 43(2), 209-216.
Zhang, T., Kesoju, S., Greene, S. L., Fransen, S., Hu, J., & Yu, L. X. (2018). Genetic diversity and phenotypic variation for drought resistance in alfalfa (Medicago sativa L.) germplasm collected for drought tolerance. Genetic Resources and Crop Evolution, 65, 471-484